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fast and easily implementable approximation algorithm for the problem of finding a min-
kimum makespan in a job shop is presented. The algorithm is based on a taboo search
technique with a specific neighborhood definition which employs a critical path and blocks of
operations notions. Computational experiments (up to 2,000 operations) show that the algorithm
not only finds shorter makespans than the best approximation approaches but also runs in
shorter time. It solves the well-known 10 X 10 hard benchmark problem within 30 seconds on

a personal computer.
(Scheduling; Heuristics; Job-shop; Taboo Search)

1. Introduction

The job shop scheduling problem (French 1982) can be
briefly described as follows. There are a set of jobs and
a set of machines. Each job consists of a sequence of
operations, each of which uses one of the machines for
a fixed duration. Once started, the operation cannot be
interrupted. Each machine can process at most one op-
eration at a time. A schedule is an assignment of oper-
ations to time intervals on the machines. The problem
is to find a schedule of minimal time to complete all
jobs.

The job shop scheduling problem is considered as a
particularly hard combinatorial optimization problem
(Lawler et al. 1982). Since it has practical applications,
the problem has been studied by many authors, and
several optimization algorithms and approximation algo-
rithms have been proposed. The optimization algo-
rithms are based chiefly on the branch and bound
scheme (Lageweg et al. 1977, Carlier and Pinson 1989,
Brucker et al. 1990, Applegate and Cock 1991). While
considerable progress has been made in this approach,
practitioners still find such algorithms unattractive.
They are time-consurning, and the size of problems
which can be solved within a reasonable time limit is
small (up to 100 operations). Moreover, their imple-
mentation requires a certain level of programmer so-
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phistication. On the other hand, approximation algo-
rithms, which are a quite good alternative, use several
various approaches classified as follows: (a) dispatch-
ing priority rules (see the review by French 1982); (b)
the shifting bottleneck approach (Adams et al. 1988, Ap-
plegate and Cook 1990), (c) a geometric approach (see
the review by Shmoys et al. 1991), (d) job insertions
(Werner and Winkler 1992), (e) a local neighborhood
search (Spachis and King 1979), (f) simulated annealing
(Matsuo et al. 1988, van Laarhoven et al. 1992), (g) taboo
search (Taillard 1989, 1992; Eck and Pinedo 1989), and
(h) a genetic approach. Some new research directions
are also outlined by Storer et al. (1992). Algorithms (a)-
(d) are constructive (create a schedule), while (e)-(g)
are iterative (improve a given schedule). Currently the
best results have been obtained via algorithms (b), (f),
and (g). Usually, the implementation of approximation
algorithms is simple; however, some of them are non-
trivial (see the algorithm by Adams et al. 1988 and its
implementation by Applegate and Cook 1991).

In this paper we propose the use of a very fast and
easily implementable algorithm based on a specific
neighborhood definition in the taboo search (TS) ap-
proach. A substantially small neighborhood is defined
using so called blocks of operations on a critical path.
We show experimentally (having tested on commonly
used benchmarks with up to 2,000 operations) that the
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algorithm performs much better than other known ap-
proximation algorithms including those based on TS.
Moreover, it was successfully run on random bench-
marks up to 10,000 operations on a PC. Some modifi-
cations of the classical TS technique are also proposed.

2. Problem Definition
There are a set of jobs | = {1, ..., n}, a set of machines
M =11,...,m},and a set of operations O = {1, ..., 0}.
Set O is decomposed into subsets corresponding to the
jobs. Job j consists of a sequence of 0; operations indexed
consecutively by (.1 + 1, ..., [;_; + 0;), which should
be processed in that order, where |; = 2{;1 0;, is the total
number of operations of the first j jobs, j = 1, ..., n
(I = 0), and 2, 0; = 0. Operation i must be processed
on machine x; € M during an uninterrupted processing
time 7; > 0, i € O. We assume that any successive op-
erations of the same job are going to be processed on
different machines.’ Each machine can process at most
one operation at a time. A feasible schedule is defined
by start times S; = 0, i € O, such that the above con-
straints are satisfied. The problem is to find a feasible
schedule that minimizes the makespan max;co(S; + 7).
It is convenient for the analysis to represent the prob-
lem by using a graph. First, observe that the set of op-
erations O can be naturally decomposed into subsets M;
= {i € O: y; = k}, each of them corresponding to op-
erations which should be processed on machine k, and
let m, = | M|, k € M. The processing order of opera-
tions on machine k is defined by permutation
= (m 1), ..., m{m)) on M, k € M; m.(i) denotes the
element of M; which is in position i in m,. Let II; be the
set of all permutations on M;. The processing order of
operations on machines is defined by m-tuple = = (m,,
.., T, where m € I1 = II; X IT, X --- X I1,. For the
processing order m, we create the digraph G{(z) = (O, R
U E(nr)) with a set of nodes O and a set of arcs R U E(7),
where

! This assumption is made for simplicity of description and is not
restrictive. Two successive operations of the same job processed on the
same machine can be separated by a fictitious operation processed on
a fictitious machine, during an infinitesimal processing time.
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Arcs from set R represent the processing order of op-
erations in jobs, whereas arcs from set E(x) represent
the processing order of operations on machines. Each
node i € O in the digraph has weight 7;, and each arc
has weight zero. Note that any node in G(r) has at most
two immediate successors and at most two immediate
predecessors. The processing order 7 is feasible only if
graph G(n) does not contain a cycle. It is well-known
that any feasible processing order 7 generates a feasible
schedule S;, i € O. Moreover, start time S; equals the
length of the longest path coming to the vertex i (but
without 7;) in G(x), i € O; if a node has no predecessors
then the length is zero. Makespan C,,..(} for the pro-
cessing order 7 equals the length of the longest path
(critical path) in G(7). Now we can rephrase the job
shop problem as that of finding a feasible processing
order 7 € Il which minimizes C,,..(7).

Denote a critical path in G(7) by u = (uy, ..., 1),
where u; € 0,1 = { = w and w is the number of nodes
in this path. The critical path u depends on =, but for
simplicity in notation we will not express it explicitly.
The critical path is naturally decomposed into subse-
quences By, ..., B, called blocks in 7 on u (see among
others Grabowski et al. 1986), where:

(1) B, = (ua]., Ugsrs s ubj),j =1,...,rand 1 = g4
sl <bh+l=m=b<b+l=a=s - =a=bh,
=0,

(2) B; contains operations processed on the same ma-
chine (B)) f P f=1,..0,71;

(3) two consecutive blocks contain operations pro-
cessed on different machines, i.e., u(B;} # u(B;,1),j =1,
., r—=1
Simply, one can say that the block is a maximal subse-
quence of u, which contains operations processed on the
same machine. In order to illustrate introduced notions,
let us consider the following example.

ExaMPLE. The problem has three jobs, 12 operations,
and two machines, n = 3, m = 2, 0 = 12. Job 1 consists
of a sequence of seven operations (1,2, 3,4, 5, 6,7), job
2 consists of a sequence of three operations (8,9, 10),
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and job 3 consists of a sequence of two operations (11,
12). Operations must be processed on machines py; = s
:/JS:/M:Ms:,Ulo:Nn=1/#2=I~L4=M6:,U9=/112
= 2 with processing times 7y = 73 = T4 = Tg = T9 = T1
=7, =2,Ty=Ts = Te = T7 = T1p = }. Consider certain
feasible processing order 7 = (my, m,), where m, = (1,8,
3,11,5,10,7) and 7, = (2, 4,9, 12, 6). The digraph G(r)
is shown in Figure 1, whereas the Gantt chart in Figure
2. G(w) contains the single critical path u = (1, 8, 3,4, 9,
12, 6, 7), w = 8. This path is decomposed into r = 3
blocks B; = (1, 8,3), B, = (4,9,12,6), B; = (7) and u(B,)
=uBy) =1, uB)=2a,=1,b=30=4b=70a
=8, by =8.

3. Application of the Taboo Search
Technique to the Job Shop
Problem

The taboo search (TS) is a metaheuristic approach de-
signed to find a near-optimal solution of combinato-
rial optimization problems. This method has been
suggested primarily by Glover et al. (1985) and fur-
ther refined and developed by Glover (1986, 1989,
1990). TS can be briefly sketched as follows. At the
beginning a fundamental notion called the move is de-
fined. The move is a function which transforms a so-
lution into another solution. For any solution, a subset
of moves applicable to it is defined. This subset gen-
erates a subset of solutions called the neighborhood. TS
starts from an initial solution. At each step the neigh-
borhood of a given solution is searched in order to

Figure 1 The diagraph G(n) = (0, R U E(r)) of 3-job, 2-machine, 12-
operation instance, where = = (my, m) m = (1, §, 3, 11, 5,
10, 7,), w0 = (2, 4, 9, 12, 6). Job 1 consists of a sequence of
seven operations 1, 2, ..., 7; job 2 of a sequence of three
operations 8, 9, 10; and job 3 of a sequence of two operations
11, 12, Operations 1, 3, 5, 7, 8, 10, and 11 are processed by
machine 1, and 2, 4, 6, 9, and 12 by machine 2. Thick arrows
denote arcs in R, dotted arrows arcs in £(r).
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Figure 2 Gantt Chart. Thick boxes denote operations in blocks B8, = (1,

8, 3) on machine 1, 5, = (4, 9, 12, 6) on machine 2, and 5;
= (7) on machine 1.

machine 1 [ 1 %3 WE
machine 2 E—Z_-J 4 == \

time r T T T T T T 1

find a neighbor (usually the best in the neighbor-
hood). This move, leading us to the best neighbor, is
performed and then the newly obtained solution is set
as the primal for the next step. In order to prevent
cycling and to lead the search to ““good” regions of
the solution space the search history is kept in the
memory and employed in the search. There are at
least two classes of the memory: a short-term memory
for the very recent history and a long-term memory for
distant history. Among many memory structures es-
tablished in TS (Glover 1989), a class of the short-term
memory called the taboo list plays a basic role. This
list does not permit to turn back to the solutions vis-
ited in the previous maxt steps, where maxt is a given
number. In practice the list stores forbidden moves
(or their attributes) or attributes of forbidden solu-
tions rather than forbidden solutions. Quite often, the
taboo list T is interpreted as a limited queue of length
maxt containing forbidden moves; whenever a move
from a solution to its neighbor is made we put the
inverted move at the end of T and remove the first
element from T if the queue is overloaded. Of course,
it may happen that an interesting move is taboo. Nev-
ertheless in order to perform such a move, an aspira-
tion function must be defined. This function evaluates
the profit in taking a forbidden move. If this profit is
acceptable, then the taboo status of the move is
dropped and the move can be performed. The stopping
rule can be defined as an instance: (a) we found a so-
lution which is close encugh to the given lower bound
of the goal function value; (b) we performed maxiter
moves without improving the best solution obtained
so far, where maxiter is a given number; and (c) the
time limit ran out.
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Other advanced and more sophisticated elements of
TS recommended for hard optimization problems are
discussed in details in papers of Glover (1990) and
Glover and Laguna (1993).

It should be noted that any implementation of TS is
problem-oriented and needs particular definitions of
structural elements such as the move, neighborhood,
memory structures, aspiration function, the neighbor-
hood searching strategy, stopping rules, the initial so-
lution, and values of several tuning parameters such as
maxt, maxiter, and the level of aspiration. The final nu-
merical characteristics of an algorithm (the perfor-
mance, speed of convergence, and running time) de-
pend both on structural elements and tuning parame-
ters.

Up until now, TS has been applied to several com-
binatorial optimization problems such as timetabl-
ing, routing, and scheduling. TS for the job-shop
problem has been discussed by Taillard (1989, 1992)
and Eck and Pinedo (1989). In this paper, we propose
another TS algorithm for the job-shop. Its structural
elements will be defined in subsequent subsections
while results of computational tests will be discussed
in §4.

3.1. Neighborhood

There are several definitions of a move based mostly on
interchanges of adjacent or non-adjacent pairs of oper-
ations on a machine. Van Laarhoven et al. (1992) and
Taillard (1989) define move v for the processing order
7 by a pair (x, y) of operations: (i) x and y are successive
operations on some machine, and (ii) x and y are suc-
cessive operations on some critical path in G(r). Then
they define the neighborhood as processing orders ob-
tained from 7 by application of all such moves. The size
of this neighborhood depends on the number of critical
paths in 7 and the number of operations on each critical
path, and it can be relatively large. Obviously the CPU
time of any TS implementation depends in principle on
the computational complexity of the single neighbor-
hood search (and thus on the neighborhood size). Tail-
lard (1989) has reduced the amount of calculations for
a large neighborhood by applying a lower bound on the
makespan instead of calculating the makespan explic-
itly for selecting the best neighbor. Instead of this ap-
proach we prefer reducing the neighborhood size
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(based on neighborhoods defined by Matsuo et al.
1988).

The main idea of the reduction consists in removing
some moves from the set introduced by Van Laar-
hooven et al. (1992), for which it is known a priori
(without computing the makespan) that they will not
immediately improve C,.. (7). We will consider a set of
moves called as “interchanges near the borderline of
blocks on a single critical path.” More precisely we con-
sider only a single (arbitrarily selected) critical path u
in G(x) and blocks B, ..., B, defined for u. We swap
the first two (and last two) operations in every block B,,
.+« B,_1, each of which contains at least two operations.
In the first block B; we swap only the last two opera-
tions, and via symmetry in the last block we swap only
the first two. Then, formally, we define the set of moves
from 7 as V(r) = Ul; Vi), where

{(upy 1, )}
Vilm) =
%)

‘(ua]r uu,-+1)/ (ubjwl/ ubi)} lf a]‘ < bj’
Viim) =

ifa, <bjandr > 1,

otherwise.

otherwise.
j=2...
ifa <y andr > 1,

otherwise.

{{(ug,, tg, 1)1
Vir) =
&

The set of moves is not empty only if the number of
blocks is greater than one (r > 1) and if there exists at
least one block with a number of elements greater than
one. Let Q(m, v) € II denote the processing order ob-
tained by the application of move v to the processing
order 7. Neighborhood H(r) of 7 is defined as all pro-
cessing orders obtained by applying moves from V(n),
ie.,

H(r) = {Q(r, v) : v € V(m)}.

For the example stated in §2 we propose a single move
(8, 3) in block B,, two moves (4, 9}, (12, 6) in block B,,
and no moves in block Bs, i.e., Vi(x) = {(8, 3)}, V,(xn)
=1{(4,9), (12, 6)}, Vs3(n) = G and V(x} = {(8, 3), (4,9),
(12, 6)}. In this case the neighborhood contains three
new processing orders obtained by the application of
appropriate moves to the processing order =, i.e.,
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H(r) = {Q(x, (8, 3)), Q(=, (4,9)), Q(, (12, 6))}
where

Q(m, (8,3)) =((1,3,8,11,5,10,7), (2, 4,9, 12, 6)),
Q(rm, (4,9) =((1,8,3,11,5,10,7), (2,9, 4,12, 6)),
and

Qr, (12,6)) = ((1, 8,3, 11,5,10,7), (2, 4, 9, 6, 12)).

Let us analyze properties of neighborhoods created
by interchanges of adjacent operations in the feasible
processing order 7. Denote by H"(7) the set of process-
ing orders each of which were obtained from 7 by an
interchange of a pair of successive operations on a ma-
chine. H"(x) contains exactly Z}L; (m, — 1) processing
orders (some of them can be infeasible). Let H'(r) be
the neighborhood employed by van Laarhoven et al.
(see beginning of this section). By definition, H(x) is a
subset of H'(w) and H' («) is a subset of H" () (i.e., H(x)
C H'(n) C H"(m)). Assuming that G() has only a single
critical path u, then H'(w) contains 2f_; ([By] — 1)
neighbors, whereas H(7) contains

r~1

min{1, |B;| — 1} + ¥, min{2, |B] — 1}

k=2
+ min {1, | B,| — 1}

neighbors, where | By| = by — a, + 1 is the cardinality
of kth block. If G(r) has several critical paths, then the
size of H'(n) will increase while the size of H(w) will
remain the same. One can say that the size of H(w) is
significantly smaller than that of H'(r) if we have sev-
eral “long’” blocks or several critical paths. Moreover, if
there is only a single block on u (r = 1) then H'(w) has
atleast | B;| — 1 = w — 1 neighbors (if w = 2), whereas
H(7) is empty.

It has been shown that for any feasible 7° € IT a fi-
nite sequence 7°, 7', ..., n* exists such that 7* is an
optimal processing order and #'*! € H'(5'),i=0,...,
k — 1 (connectivity property). Moreover, H'(r) con-
tains only feasible processing orders, and for any «
€ H'(m)\H'(r), a is infeasible or Cp,(e) = Cpax(m)
(van Laarhoven et al. 1992). In other words those pro-
cessing orders which do not belong to H'(w) are “less
interesting” from the improvement point of view. Since
H() is a subset of H'(n), then it contains only feasible
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processing orders as well. Now we will show that the
processing orders which do not belong to H(r) (but can
belong to H'(r)) are also “not promising” for under-
going immediate improvements.

THEOREM. For any processing order a € H'(m)\H(7),
Cmax(a) = Cmax("rr)'

Proof of the theorem is given in Appendix A. The
proposed neighborhood H(w) allows us to formulate
certain sufficient conditions for processing order opti-
mality.

PROPERTY. If V{(m) = ( then « is the optimal processing
order.

Proof of the property is given in Appendix B. Note
that V(x) = (JJ if either all operations from u are pro-
cessed on the same machine or all operations from u
belong to the same job. Experimental results from §4
show that the use of the property stops searching in
about 20 percent of instances.

Finally, note that the connectivity property does not
hold for H(r).

3.2. Taboo List

LetT = (Ty, ..., Tmax) be the taboo list of a fixed length
maxt, where T; € O X O is the forbidden move, 1 = |
= maxt. The taboo list is initiated with zero elements T;
=(0,0), 1 = = maxt. A move v = (x, y) is added to
taboo list T (denoted T © v) in the following standard
way: we shift taboo list T to the left and put v on the
position maxt (i.e, weset T;:=Tj,4,j=1,..., maxt — 1
and T = v). Such a form of T is used only for sim-
plicity of notation. In practice, T is implemented as the
circular list, which implies that operator € can be per-
formed in O(1) time.

For a move v = (x, y), a move ¥ = (y, x) will be called
an inverse move. If only a move v has been performed
from 7 then the inverse move 7 becomes forbidden and
willbeadded to T, 1e. T:=T & 7.

3.3. Neighborhood Searching Strategy

Let m, V(n), H(xr), and C* be the processing order, set
of moves, neighborhood, and the best known make-
span. Assume that the set of moves V() is not empty.
We classify these moves into three categories: unforbid-
den (U), forbidden but profitable (FP), forbidden and
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nonprofitable (FN). Moves from set V(m)\T are U-
moves, whereas those from set V(7) N T are forbidden.
A forbidden move is profitable if it leads to a makespan
shorter than C*. This is, FP-moves are defined by set

A= eVm NT: CuulQln, v)) < C*.

The remaining moves, i.e., from set (V (%) N T)\A, are
FN-moves.

It is quite natural that a move to be performed should
be selected among U- and FP-moves. Usually among
them, the move yielding the minimal makespan is the
one performed (we do exactly the same thing). If there
are neither U-moves nor FP-moves, the problem of se-
lection is treated by many authors marginally (e.g., se-
lect a FN-move at random or erase the whole T), al-
though it has been discussed in details in the original
TS proposals of Glover (1989). Note that our neighbor-
hood is substantially smaller than those defined by
other authors. Therefore, the situation in which only
FN-moves are available appears more often than in
other algorithms. In this context the strategy of selecting
an FN-move is important. Moreover, recent studies
have confirmed that for hard problems any reasonable
TS implementation should contain an appropriate rule
for making such a choice, see, i.e., Hubscher and Glover
(1992).

In our TS implementation, we propose selecting the
“oldest” move (exactly the same as in Glover 1989) and
additionally making a special modification of the taboo
list based on replications of the “youngest”” move. More
precisely, if V() contains a single move then there is
no problem of the selection—this move should be cho-
sen. Otherwise, the problem of the selection is solved
as follows. First, modify the taboo list: repeat T := T
@B Toae until V(m\T # (J (this can be performed in
O(maxt) time). Thereafter the set V(7)\T contains ex-
actly a single move which can be chosen next. One can
say that this modification of T is a form of the dynamic
control of a taboo list length. To illustrate, consider the
set of moves V{r) = {(4, 5), (1, 2)} containing only FN-
moves, and a taboo list

T=1{(23),(1,2),(,)5),(45),2,7)}

of the length maxt = 5. The proposed rule will select
the move v’ = (1, 2), and the modified taboo list will
take the form of

802

T=1(65),45),(27),27),2, 7N}

At the end, the inverse move v’ = (2, 1) will be added
to T, which implies the final form of the taboo list

T' = T @ ? = {(4,5)/ (2/ 7)/ (Zr 7)1 (2/ 7}1 (21 1)}t

In view of the above considerations we have formu-
lated the following Neighborhood Searching Procedure
(NSP). NSP starts with a processing order =, a non-
empty V (), a current taboo list T, a best known make-
span C¥, and returns move v', the new processing order
«" and the modified taboo list T".

Step 1. Find the set of FP-moves

A={veVm NT:ClQx, v)) < CH.

U WV(ENT)U A+ Gthenselect v’ € (V(x\T) U Aso
that

Conax(Q(mr, v'))
= min {Cpax(Q(m, v)) 1 v € (V(mNT) U A}

and go to 3.

Step2. If |V(n)| = 1thenselectv’ € V(x). Otherwise
repeat T:= T @ Tpaw until V(x)\T # (. Then select v’
€ V(mN\T.

Step 3. Setn’ := Q(r, v )and T":=T S o'

NSP will be used as an element of algorithms presented
in the next section.

3.4. Algorithms

It is quite simple to design, using NSP, a classical TS
algorithm. Let us start with a given primal processing
order 7 and with a primary empty taboo list. At each
iteration we find the set of moves V(7). Next, applying
NSP we select move v’ € V(x), which determines
neighbor 7" = Q(r, v'), and thereafter we create the new
taboo list T’. The processing order 7’ and taboo list T’
are set to be primal for the next iteration. The best found
makespan C* and associated processing order 7* are
currently updated. The algorithm stops in either two
cases: when the optimal processing order has been
found (see property in §3.1) or when the number of it-
erations without improving the best makespan is
greater than a constant maxiter a priori fixed. The above
considerations lead us to the following Taboo Search
Algorithm (TSA), which begins with the processing or-
der #* (found by any heuristic algorithm), C*
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= Cpax®®), T = &, m = ¥, iter = 0 and returns the best
processing order n* and C* = Cya, (7).

Step 1. Setiter:= iter 4 1. Find the set of moves V (7).
If V(r) = ¢ then STOP; =* is optimal.

Step 2. Find the move v’ € V(x), the neighbor =’
= Q(m, v") and the modified taboo T' by applying NSP.
Setwm:=x',T:="1T".

Step 3. If Conan(m) < C*thenset 7% := 7, C* i= Cpaxn),
iter := 0 and go to 1.

Step 4. If iter = maxiter then go to 1; otherwise STOP.

It is quite obvious that maxiter (limit on unimproved
iterations), maxt (length of taboo list), and 7* (primal
processing order) have an influence on the efficiency
and effectiveness of this scheme. The increasing of max-
iter yields a higher possibility of finding a better solu-
tion; however, we observe this only in a period of pri-
mal values. A further increase of this parameter has lit-
tle influence on C* but evidently increases the running
time. Moreover, some instances get into the cycle during
iterations, which is a well-known disadvantage of TS.
As regards maxt, we observe that the best way is to set
this value individually for each instance. The primal so-
lution has a week influence on the final C*. TSA that
was started from a “badly” selected primal solution
provides a result comparable with that obtained from a
“good” one (under slightly increased number of itera-
tions). In this context, the improvement of TSA seems
to be possible only by including some long-term mem-
ory elements (Glover 1990, Glover and Laguna 1993).

Observe that due to a small neighborhood, TSA
works very fast. Therefore one can propose to use TSA
as a part of a more complex system which manages
searching and leads it to presumable good regions of
the solution set. The commonly used technique based
on various starting solutions seems to be the best idea.
In this order a parameterized heuristic or a list of vari-
ous heuristics can be used. The essential disadvantage
of this approach is the loss of information about previ-
ous runs of TSA. Therefore we suggest using the best
solution found during the previous run as the new start-
ing solution. Unfortunately this approach (without any
modification) loses all history of searching; i.e., we al-
ways start with an empty taboo list and a full set of
moves. Consequently, we propose the modified (final)
version of the taboo search algorithm called Taboo
Search Algorithm with Back Jump Tracking (TSAB),
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which does not have the above mentioned fault. The
main idea of TSAB is related to a strategy that resumes
the search from unvisited neighbors of solutions pre-
viously generated (Glover 1990).

During the run of TSA we store in list L the last maxl
best processing orders, where maxl is a fixed number.
More precisely, if we have found in some iteration iter
the processing order 7 such that C,,,,(7) < C* (see Step
3), we store the triple (7, V{m)\v’, T) in list L, where v’
is a move which will be performed from 7. Note that
V(n) and v’ will be found in iteration iter + 1 (see Steps
1 and 2). This triple is stored only if V(m)\v’ = (. Just
after TSA has been finished we start it again with the
processing order, set of moves, and the taboo list located
in the last position in list L. In this case TSA is started
from Step 2, and the process of storing the best process-
ing orders is continued. TSAB is stopped if list L is
empty.

For a precise description of TSAB, we define list L and
an additional operator. Let L = (L, ..., L;) be the list
with current list length I, | = maxl where maxl is the
upper bound on the list length, and L, = (#, V, T) is a
stored triple: a processing order, set of moves, and a
taboo list, 1 = j == I. The operator for adding the triple
(m, V, T) to list L (denotation L & (=, V, T)) is defined
as follows: if | < maxl then we put (x, V, T) in position
I+1inL Ge,wesetl:=]+1and L, := (7, V, T));
otherwise we shift list L to the left and put (x, V, T) in
the position maxl (i.e., wesetLj:=L;;,j=1,..., maxl
— 1 and L. = (7, V, T)). Note that this operator has
the similar significance as adding an operator on the
taboo list.

TSAB begins with the processing order 7* (found by
any heuristic algorithm), 7 = 7%, C* = Cpox(#*), T = &,
L= (e, ! =0), iter = 0 and save := true. The flag
save controls the process of storing on the list L. TSAB
returns the best processing order 7n* and C,,.(7*) = C*.

Step 1. Setiter:= iter + 1. Find the set of moves V(r).
If V(r) = & then STOP; 7* is optimal.

Step 2. Find the move v’ € V(x), the neighbor =’
= Q(=, v'), and the modified taboo T’ by applying NSP.
If save = true and V(m)\v' #= & then set L := L
W (7, Vir\v', T).

Set r:=x', T:=T' and save := false.

Step 3. If Cou(m) < C*thenset n* 1= 7, C*:= C,,. (m),

iter := 0, save := true and go to 1.
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Step 4. If iter = maxiter then go to 1.

Step 5. If I # O then set (w, V{(m), T):=L;, [ :=1-1,
iter := 1, save := true and go to 2; otherwise STOP.

Observe that TSAB has no long-term memory for
preventing long cycles in a single path search (Steps
1---4,5teps 1---4, - - -). It has been made consciously.
By the experimental observation, any transformation
which disturbs the real makespan value (e.g., by add-
ing a penalty associated with a move) have “bad” in-
fluence on the search process. Therefore instead of pre-
venting, we only detect a cycle, and if it occurs, we end
this path. More precisely, Step 4 takes the form “If (iter
= maxiter) and (IsCykle(iter) = false) then go to 1.”
Function IsCykle(iter) returns true at iteration iter if
there exists the period 6, 1 = é = maxd, such that Cci-®
= (!, i =iter + 1 — maxc-max9, ..., iter, where C' is
the makespan found at iteration i, and maxé, maxc are
given parameters. Otherwise, it returns false. In other
words, the function detects repetitions of makespans,
with a period of length 6 = maxé, observed during the
last maxc-maxé iterations. It should be noted that
IsCykle(iter) can be found in O(1) time. The increase
of maxc yields stronger conviction of a cycle existence
but simultaneously increases the number of unneces-
sary performed iterations (if a cycle exists}. The in-
creasing of maxé allow us to detect longer cycles; how-
ever, it increases the storage space required for saving
the history. Then maxc and maxé are set experimen-
tally as a compromise between the amount of compu-
tations and “‘certainty’’ of a cycle existence.

Further considerations deal with the computational
complexity of algorithm TSAB. The following time-
consuming elements are performed in a single iteration
of TSAB: finding V(r), applying NSP, applying opera-
tor & to list L, and storing processing order 7* (these
last two elements are performed quite rarely and can be
done in O(p) time). Let the computational complexity
of NSP be analysed. Graph G(a), where a = Q(r, v),
can be constructed from G(x) in O(1) time, v € V(n).
Graph G(a) contains o nodes and 2%, {0; — 1) + 2f,4
(m — 1) = 20 — n — m arcs. Then makespan C,...(a)
can be found in O(o) time by using the standard Bell-
man’s algorithm. Since we have set maxt < o in our
implementation, NSP can then be performed in O(ho)
time, where k = |V (xn)| is the number of neighbors in
neighborhood H(n). Just after Cy..(a) has been calcu-
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lated we can find and store the critical path of G(a) in
O(o) time. Therefore, passing to Step 1 of TSAB (from
Step 3 or 4), we have the critical path already calculated.
Next, blocks of operations and set V{x) can be found in
Ofw) time, where w < o. Finally, the computational
complexity of a single iteration of TSAB is O(ho). In our
experiments we observed i between 5 and 9 for in-
stances up to 2,000 operaticns (for small 0, 0 = 200, 1 is
closer to 5 while for greatest o, 0 = 500, h is closer to 9).
The number of iterations of TSAB depends on each par-
ticular instance, on parameters maxiter and maxl, and
is a priori unknown.

3.5. Initial Solution

The initial solution for TSAB can be found by any heu-
ristic method. Further on we present an approximation
algorithm employed in our computations. This algo-
rithm is based on an insertion technique which has been
primarily applied to flow-shop problems (Nawaz et al.
1983) and then refined and applied to job-shop prob-
lems (Werner and Winkler 1992).

We construct the processing order, starting from a
primal partial order and inserting in each step a single
operation. In more detail, we start from the order con-
taining all operations of the job with the greatest sum
of processing times. Next we successively insert oper-
ations of remaining jobs in the sequence of nonincreas-
ing operation processing times. Denote by o = (a4, .. .,
o) the partial processing order, where o, = (o(1), .. .,
o(mi)), mi = my is a partial processing order of oper-
ations on kth machine, k = 1, ..., m. For o we define
the graph G'(¢) = (O, R U E'(0)), where

mo -1

E'(0) = U U {(0u00), o + D).
=1 =

Let d;(c) denote the length of the longest path passing
through vertex i in G'(c). Let x be an operation which
is inserted into o (obviously x is not in o). Denote by z
= u, the machine on which operation x should be pro-
cessed. Consider set 1} of m] + 1 permutations obtained
from o, by the insertion of operation x on consecutive
positions, i.e., before operation ¢.(1) and immediately
after operations o.(j), j = 1, ..., mi. Set II; generates
m, + 1 new partial processing orders on machines hav-
ing fixed order o, on kth machine, k =1, ..., m, =z,
and varied (from T1.) on zth machine. Since some of
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these orders can be infeasible, then let I1’ denote the
subset containing only feasible orders. It is easy to show
that for any feasible ¢ and x, set Il’ is not empty (con-
tains at least one feasible order). For each processing
order ¢’ € II' the longest path d.(c") passing through
vertex x is calculated; the processing order which yields
the minimum length is taken as the partial processing
order for the next step.

In view of the above considerations we formulate the
following INSertion Algorithm (INSA). Without giving
up anything of our previous generalization, we can set
that the job with the greatest sum of processing times
has the index 1. For the sake of simplified notation we
assume that the number of operations of each job equals
the number of machines and that each job has precisely
one operation on each machine (ie, o; = m, [, = jm, |
€], m.=nkeM,and o = nm).

Step 0. Setmj :=land g,(1):=1Ifor!l=1,..., L.

Step 1. Find permutation w of {l; + 1, ..., o} accord-
ing to nonincreasing processing times of operations.

Step 2. For j =1 to o - I, perform Step 3.

Step 3. For partial processing order o, operation x
= w(j) and machine z = p, find set I1] and set IT". Find
o' € IT' such that d,(o") = min,er d.(a). Set ¢ := o'
and m} :=m} + 1.

The computational complexity of INSA is O(n’m?).
The effectiveness of the algorithm is comparable with a
combination of 10 straight priority dispatching rules
tested by Adams et al. (1988).

4. Computational Results

Algorithm TSAB has been implemented in Pascal and
C on a personal computer AT 386DX. In the implemen-
tation, we set parameters maxc = 2 and maxé = 100 for
the function IsCycle(iter).

TSAB has been tested in several commonly used in-
stances of various sizes and hardness levels.

(a) Three instances denoted as FS1, FS2, FS3 with o
=36---100 (m X n =6 X 6,10 X 10, 5 X 20) due to
Fisher and Thompson (1963), and two instances AD5,
AD6 with ¢ = 100 (10 X 10) due to Adams et al. (1988),

(b) Forty instances of eight different sizes denoted as
Al---I5with o = 50---300 (10 X 10, 10 X 15, 10 X 20,
10 X 30,5 x 10,5 x 15,5 X 20, 15 X 15) due to Lawrence
(1984),

MANAGEMENT SCIENCE/ Vol. 42, No. 6, June 1996

(c) Eighty instances of eight different sizes with o
=225---2,000 (15 x 15, 15 x 20, 20 x 20, 15 x 30, 20
% 30,15 X 50, 20 X 50, 20 x 100) due to Tailard (1993),

(d) Forty instances of four different sizes with o
=2,500---10,000 (5 x 500, 10 x 500, 5 x 1000, 10
% 1000) randomly generated.

Denotations FS1, FS2, FS3, Al- - I5 are taken from
van Larhoven et al. (1992). FS2 is the well-known in-
stance (10 machines 10 jobs) which required almost 25
years before an optimal solution could be reached. In-
stances FS1, D1---5, F1, F5, G1---5, H1---5 are re-
ported by several authors as ““easy,” whereas others are
“hard.” Group (c) contains “particularly hard” cases
selected by Taillard (1993) among a large number of
randomly generated instances.

We compared our algorithm TSAB with five recently
best approximation algorithms: (ABZ) the Shifting Bot-
tleneck Procedure SBII of Adams et al. (1988); (AC) a
combination of Bottle5 and Shuffle Procedures of Ap-
plegate and Cook (1991); (MSS) a controlled search us-
ing the simulated annealing algorithm of Matsuo et al.
(1988); (LAL) the classical simulated annealing algo-
rithm of van Laarhoven et al. (1992); and (TA) a taboo
search algorithm of Taillard (1989). From the above
listed papers we conclude that each algorithm was
tested on instances (a)-{b). However, wheteas detailed
results were included for ABZ, MSS, and LAL; the au-
thors of AC and TA presented only selected results or
conclusions. On the other hand Taillard tested TA, AC
and ABZ (in the version Bottle implemented by Apple-
gate and Cook) on instances (c). Results of our com-
parisons will be discussed in detail in the next two sub-
sections.

4.1. Results for Instances (a)-(b)

We compare all algorithms from two points of view:
efficiency and effectiveness. Tables 1-3 have been pre-
pared based on the lists of best found makespan and
running times reported by the authors of ABZ, MSS and
LAL. ABZ and MSS were run on a VAX 780, while LAL
was run on a VAX 785. The authors of the LAL algo-
rithm suggest that VAX 785 is two times faster than 780
and therefore adjusted (multiplying by two) the run-
ning times of LAL enclosed in Tables 1-3 correspond
with those obtained from 780. We found the speed of
our PC between the speed of VAX 780 and 785 (about
1.5 times faster than 780 model).
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Table | Compact Resuits for Hard Problem Instances of Fisher and
Thompsen (1963), Adams et al. (1988), and Lawrence (1984)

Algorithm EX Av CPU [sec] B EW
ABZ 27 549 21:4:2
MSS 24 271° 13:9: 2
LAL 25 14,706 15:8: 2
ABZ + MSS + LAL 27 11:13:3
TSAB 27 124°

EX: the number of compared hard problems (FS1. .. 5 excluding “easy”
instances FS1,D1...5,F1,F5 Gt ... 5, H1...5);

Av CPU: the average GPU time; ® on a VAX-780, ® on a Personal Computer
AT 386DX;

8: E: W: the number of examples for which TSAB found better (B), equal
(E) or worse (W) makespan than Algorithm H, H & {ABZ, MSS, LAL, ABZ
+ MSS + LAL.

Parameters maxl, maxt, maxiter, and the heuristic
method of finding the initial solution were chosen ex-
perimentally in order to ensure a compromise between
the running time and solution quality. Finally we tested
two versions of our algorithm, denoted by TSAB and
TSAB’, where

TSAB: a single run of algorithm TSAB from §3.4 with
INSA (used for finding the initial solution), fixed pa-

rameters maxl = 5, maxt = 8, and the parameter maxiter
varying during the run. We set maxiter = 2,500 at the
beginning and if the makespan was improved during
the run (Step 3), and we set maxiter = 2,500
— 400*(maxl — 1) if the back jump tracking to the po-
sition [ on the list L (Step 5) was performed.

TSAB': the best result selected among three runs of
algorithm TSAB from §3.4 with maxl = 5, maxiter
= 3,000 (maxiter) = 3,000 — 500=(max] — ) for back
jump tracking, respectively). There were two runs with
INSA and maxt = 8, 10, and a single run with classical
SPT rule (as the method of finding the initial solution)
and maxt = 8.

The compact results of comparisons TSAB versus
ABZ, MSS, LAL and ABZ + MSS + LAL (the best so-
lution of the three) on “hard” instances are given in
Table 1. {In “easy” instances all algorithms show excel-
lent performance.) Note that TSAB is better than other
algorithms both in CPU time and in the number of the
best makespans. Detailed results of comparison are
given in Tables 2 and 3. Note that makespan 930 (opti-
mal) of the notorious instance F52 was found within 30
seconds. TSAB found optimal solutions of 30 instances
(from 45) and proved optimality (see property) of 20
(from 30) cases. Moreover, TSAB' found optimal solu-

Table 2 Results for Problem Instances of Fisher and Thompson (1963} (FS1: 6 machines 6 jobis, F52: 10 machines 10 jobs, F83: § machines 20 jobs)
and Problem Instances of Adams et al. (1988) (AB5, AB6: 10 machines 10 jobs}
Makespan CPU [sec] improvements [%]
Problem OPT ABZ MSS LAL? TSAB TSAB’ ABZ° MSS? LAL® TSAB! ABZ MSS LAL
FS1 55 b5* - 55* 55* 1 - 104 0 0 - 0
FS2 930 930" 946 930" 930" 851 988 115,544 30 0 1.69 0
FS3 1,165 1,178 - 1,165* 1,165* 80 - 125,518 3 1.10 - 0
AB5 1,234 1,239 - - 1,238 1,236 1,503 - - 4 0.08 - -
AB6 943 943~ - - 945 943* 1,101 - - 28 -0.21 - -

OPT: optimal value of the makespan (or the best found — in brackets) found by branch-and-bound algorithm of Brucker et al. (1991);

#the best makespan found over five runs;

®the CPU time on a VAX-780;

©the average CPU time over five runs (on a VAX-780);

¢ the CPU time on the personal computer AT 386DX;

* the algorithm found optimal solution without proving optimality;

° the algorithm found optirnal solution and proves its optimality;
Improvement: the value 100- (H — TSAB)/H, where H € {ABZ, MSS, LAL};
TSAB': the best makespan found over three runs of TSAB.
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Table 3 Results for Problem Instances of Lawrence (1984)°
Makespan CPU [sec] Improvements [%]
Problem OPT ABZ MS3 LAL® TSAB TSAB' ABZ° MSS® LAL® TSABY ABZ MSS LAL

10 machines, 10 jobs
Al 345 978 959 956 946 945* 240 156 1372 64 3.27 1.36 1.05
A2 784 787 784 785 784~ 192 94 1,440 3 0.38 0 0.13
A3 848 859 843* 861 848~ 225 106 1,346 66 1.28 0 1.51
Ad 842 860 842 848 842* 240 116 1,660 60 2.09 0 0.71
A5 902 914 907 902~ 902* 289 100 1,334 150 1.31 0.55 0

10 machines, 15 jobs
B1 (1,050) 1,084 1,071 1,063 1,055 1,047 362 206 3,982 21 2.68 1.48 0.75
B2 927 944 927 938 954 927* 419 184 4,326 ] —1.06 -2.91 -1.71
B3 1,032 1,032% 1,032* 1,032% 1,032° 225 20 4,186 1 0 Q 0
B4 935 976 973 952 948 939 434 200 4,196 184 2.87 257 0.42
B5 977 1,017 991 992 988 977* 430 180 4,266 155 2.85 0.30 0.40

10 machines, 20 jobs
C1 1,218 1,224 1,218 1,218* 1,218° 744 54 8,684 16 0.49 0 0
G2 (1,270) 1,291 1,274 1,269 1,259 1,236 837 286 9,070 66 2.48 117 0.79
C3 (1,276) 1,250 1,216 1,224 1,216° 901 306 8,708 107 2.72 0 0.65
C4 (1,202) 1,239 1,196 1,218 1,164 1,160 892 268 8,816 493 6.05 2.68 4.43
C5 1,355 1,355 1,355* 1,355% 1,355° 551 8 7,912 2 0 0 0

10 machines, 30 jobs
D1 1,784 1,784 - 1,784 1,784° 38 - 3,034 1 0 - 0
D2 1,850 1,850* - 1,850* 1,850° 29 - 3,504 2 0 - 0
D3 1,719 1,719* - 1.719* 1,719° 26 - 3,760 0 0 - 0
D4 1,721 1,721* - 1,721* 1,721° 28 - 3,772 4 0 - 0
D5 1,888 1,888* - 1,888* 1,888° 22 - 3,336 1 0 - 0

5 machines, 10 jobs
Fi 666 666" - 666* 666° 1 - 246 0 0 - 0
F2 655 669 655" 655* 655 12 4 234 8 2.09 0 0
F3 597 605 597* 606 597* 32 34 258 1 1.32 0 1.49
F4 590 593 590* 590* 593 590* 45 34 242 0 0 ~0.51 —0.51
F5 593 593* - 593* 593° 1 - 236 0 0 - 0

5 machines, 15 jobs
G1 926 926* - 926* 926° 1 - 572 0 0 - 0
G2 890 890 - 890* 890 2 - 752 Q g - 0
G3 863 863 863* 863" 863° 5 2 584 0 0 0 0
G4 951 951* - 951* 951° 1 - 566 0 0 - 0
G5 958 958~ - 958* 958° 1 - 486 0 0 - 0

5 machines, 20 jobs
H1 1,222 1,222* - 1,222* 1,222° 2 - 1,254 0 0 - 0
H2 1,039 1,039 - 1,039* 1,039° 1 - 1,310 0 0 - 0
H3 1,150 1,150* - 1,150* 1,150° 1 - 1,128 0 0 - 0
H4 1,292 1,292 - 1,292* 1,292° 1 - 924 0 Q - 4
H5 1,207 1,207 - 1,207* 1,207° 3 - 1,472 0 0 - 0

15 machines, 15 jobs
il 1,268 1,305 1,292 1,293 1,275 1,268 735 624 10,692 623 2.30 1.32 1.39
12 (1,424) 1,423 1,435 1,433 1,422 1,407 837 578 10,574 443 0.07 0.91 0.77
13 (1,232) 1,255 1,231 1,215 1,209 1,196 1,079 672 10,960 165 3.67 1.78 0.49
14 1,233 1,273 1,251 1,248 1,235 1,233* 669 660 11,532 325 2.99 1.28 1.04
15 {1,238} 1,269 1,235 1,234 1,234 1,229 899 616 10,746 322 2.76 0.08 0

? The legend for this table appears on the bottom of Table 2.
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tions of 7 (out of 15 remaining) cases. For instances C2,
C3, C4, 12, 13, 15, which had been unsolved by a branch-
and-bound algorithm of Brucker et al. (1991), TSAB
found better makespans and for C3 proved optimality.
TSAB' also found better makespans for instances B1, C2,
C4, 13, which had been unsolved by currently the best
branch-and-bound algorithm of Applegate and Cook
(1991).

Algorithm AC, which is a combination of modified
ABZ (Bottle5) and a post-optimization procedure (Shuf-
fle), generates better makespans than ABZ; however, it
requires significantly greater CPU time. Taillard (1989)
showed that TA is better than AC (and bottle proce-
dures) with respect to CPU time and makespan. This
allowed us to restrict our attention to the performance
of TA. Although TA has been tested in instances (a)-
(b), only results for FS2, Al---A5 and B1, C2, (4, 13
have been published. The number of iterations observed
in 15 runs of TA necessary to find the optimal makespan
of FS2 were between 2-10° and 35-10° (using only the
short-term memory). The best result 2-10° iterations
was chosen from among 10 runs of TA (using the short-
and long-term memory). The mean makespan obtained
after 10* iterations was less than 3% above the optimal
one. Note that TSAB found an optimal makespan of F52
within less than 0.75-10* iterations. The performance of
TA on instances Al - - - A5 was presented in the form of
the mean of makespans as a function of running time
on a VAX 785. The mean of the optimal makespans is
864.2 and TA found 873 after 150 sec and 866 after 1000
sec. TSAB found 864.4 after 150 sec on a PC (see Table
3). Finally note that TSAB’ found better makespans than
TA for C2, C4, 13 and equally good ones for Bl (see
Taillard, 1989).

Detailed characteristics of TSAB are provided in Ta-
ble 4. The reduction of a primal makespan reaches in
extreme case 18 per cent, while the number of im-
provements of a solution during the search is greater
than 75. It means that TSAB quickly and efficiently
reduces the makespan. The number of iterations nec-
essary to find the best solution is less than 6.5-10%
The length of list L (parameter maxl) has an important
influence on the final result of “hard’” instances. Pa-
rameter maxi correlates with maxiter in the sense that
a decreasing maxiter should be compensated by an
increasing maxl in order to guarantee the same per-
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formance of TSAB. Our selection is a compromise
reached experimentally.

In our research we also examined other methods of
finding an initial solution (among others SPT, LPT, EFT,
RANDOM). In each case TSAB provides a makespan
comparable with those generated by INSA after a small
number (100---500) of iterations performed within a
few seconds.

In order to isolate the impact of the neighborhood
factor on the acceleration of the search we performed
an additional test on hard instances (b). We compare
TSAB with its analog version working on the neighbor-
hood H'(x). For each group of instances Al---5,
B1---5,C1---5 and I1- - -5 the performance of the al-
gorithms was presented in the form of the mean of
makespans as a function of running time on AT 386DX.
At each group the speed of convergence of TSAB with
neighborhood H(w) is significantly better than that with
neighborhood H' (7). The superiority increases with in-
creasing n. To illustrate the experiment, the results of
the comparison for instances C1- - -5 are shown in Fig-
ure 3.

4.2. Results for Instances (c)—(d)
Instances (c) were solved by TA, AC, and ABZ (Taillard
1989). Taillard reports that neither ABZ nor AC can
solve instances with 0 > 600 due to running time and
the explosion of the size of the search tree. For instances
with 0 = 600, TA is shown to be better than AC and
ABZ with respect to CPU time and the quality of gen-
erated makespans. Therefore, we discuss only a com-
parison of TSAB with TA. As in Taillard (1992), we are
chiefly interested in the solution performance not seen
on the running time. Therefore, without tuning, we set
max] = 5, maxt = 8, maxiter = 10,000 if the algorithm
has improved the makespan (Step 3) and maxiter
= 6,000 if back jump tracking (Step 5) has been per-
formed. The primal solution has been found by INSA.
The time per single iteration is approximately
4.5-107% 0 sec on a PC 386DX. The time per single
jiteration of TA on a VAX 785 is 16.7-107°-0 sec. In
comparing computer speeds, we conclude that TSAB
performs a single iteration at least four times faster
than TA.

The speed of convergence of TSAB and TA is pre-
sented in Table 5. APRD is the average percentage rel-
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Tabile 4

Results of Improvements

Makespan by TSAB for maxi

Problem INSA 0 1 2 3 4 5 P RED [%] ITER
FS1 59 57 55* 3 6.8 580
Fs2 994 938 930* 11 5.4 7,326
FS3 1,269 1,165* 22 8.2 1,183
ABS5 1,381 1,238 4 104 1,019
ABGB 1,012 947 945 14 6.6 7,948
Al 1,077 974 956 946 21 12.2 19,695
A2 821 784* 9 45 1,031
A3 926 853 853 853 853 848* 14 8.4 18,023
Ad 971 850 842" 21 13.4 15,039
A5 1,003 917 907 907 907 902 28 10.1 37,959
B1 1,179 1,061 1,055 34 10.5 3,732
B2 1,032 968 954 19 7.6 2,246
B3 1,132 1,032 18 8.8 208
B4 1,021 949 949 949 948 23 7.2 30,001
B5 1,147 1,001 997 995 995 988 48 13.9 27,677
C1 1,397 1,226 1,218* 58 128 2,106
c2 1,466 1,268 1,268 1,259 48 141 8,971
€3 1,485 1,221 1,216 72 184 16,630
c4 1,385 1,218 1,164 76 16.0 63,469
cs 1,463 1,355* 27 74 282
D1 1,966 1,784 39 9.3 84
D2 1,982 1,850* 33 6.7 135
D3 1,767 1,719* 8 2.7 9
D4 1,844 1,721* 45 6.7 302
D5 1,967 1,888* 18 4.0 48
F1 666* 0 0.0 0
F2 722 658 655* 16 9.3 5,353
F3 681 617 605 605 597* 14 12.3 7,546
F4 659 593 8 10.0 21
F5 593* 0 0.0 0
a1 950 926* 3 2.5 6
G2 976 890* 13 8.8 23
G3 868 863* 1 0.6 1
G4 951* 0 0.0 0
G5 958* 0 0.0 0
H1 1,293 1,222* 8 5.5 1
H2 1,044 1,039* 1 05 1
H3 1,154 1,150* 1 04 1
H4 1,328 1,292* 1 927 1
H5 1,323 1,207 29 8.8 90
] 1,445 1,303 1,303 1,279 1,278 1,278 1,275 43 11.8 64,473
12 1,726 1,450 1,450 1,422 75 17.6 41,183
13 1,307 1,246 1,209 33 7.5 15,579
14 1,393 1,274 1,237 1,237 1,235 55 11.3 31,991
15 1,387 1,261 1,234 50 11.0 30,417

INSA: the initial makespan for TSAB found by INSA (see §3.5);

IP: the number of improvements of makespan in TSAB;

RED: the value 100- {INSA — TSAB)/INSA;

ITER: the number of iterations performing by TSAB (up to
* solution is optimal,

the best makespan);
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Figure 3 Performance of TSAB with Neighborhoods 4 and A’ on In-
stances C1- - -5.
1440 -
I TSAB+H '
1420 4 ~——— TSAB+H

Mean makespan

1240 — T —— T e A

1 10 100 1000

CPU time (Seconds on AT 386DX)

ative difference 100-(C"” — C*)/C* over 10 instances of
a given size, where H € {TSAB, TA} and C* is the ref-
erence makespan (the best that was found by Tailard
1993, obtained in 3 or 4 runs of TA with 5-10°---10’
iterations per run). For our algorithm we scan APRD

after performing a given number of iterations (from 10°
to 10°). APRD of TA, scanned in some irregular num-
bers of iterations, is taken from Taillard {1989). Note
that TSAB generates in every case faster and better
makespans than TA. As an instance, see case 30 jobs 20
machines for which APRD 3.5% is obtained by TA after
performing at least 2-10° iterations, while TSAB found
APRD 3.7% after 2-10* and 1.9% after 10° iterations.
Particularly good results were found for larger prob-
lems with o = 1000. For these instances reference make-
spans were reached by TSAB in a single run after per-
forming 2-10* iterations. Note that, originally, reference
makespans were obtained in three or four runs of TA
with 5-10° iterations per run.

In Table 6 we present instances for which TSAB found
better makespans than the reference ones. For this test
TSAB was run twice with maxt = 8 and 10, and with max],
maxiter having the same values as the above. We found
33 better results among 61 instances for which optimality
has not been proved. We proved optimality of 10 results
(from 33 found) using property {(eight cases} and single-
machine preemptive lower bound (two cases).

Table 5 Average Percentage Relative Difference (APRD) Between the Makespan Given by Algorithm H, H < (T SAB, TA}, and the Reference Makespan °
for Problem Instances of Taillard (1993)°
APRD of TSAB for iter
APRD of TA
m 0 1,000 2,000 5,000 10,000 20,000 50,000 100,000 (iter is given in brackets)
15/15 13.9 5.4 3.5 2.8 2.2 1.3 11 0.8 5.2 1.7 0.9
(3,790) (42,423) {142,989)
20/15 16.5 53 45 3.9 32 24 14 0.9 7.3 2.6 15
(5,544) (64,844) {215,935)
20/20 15.8 8.7 54 3.6 2.4 1.9 14 1.2 6.8 16 0.9
(8,941) (93,176) (343,927)
30/15 18.8 71 5.7 36 2.8 1.6 0.7 0.6 113 21 1.1
(8,174) (105,695) (426,762)
30/20 20.3 8.8 7.3 56 45 3.7 25 1.9 13.6 3.5 14
(14,169) (201,542) (762,4486)
50/15 16.4 47 3.1 1.2 0.3 01 0.0 0.0
50/20 17.1 59 41 2.1 0.6 -0.8 -15 -2.0
100/20 13.2 49 3.2 11 0.4 0.0 -041 0.1

2 the best makespans reported by Taillard (1993);
® APRD found over 10 instances of the given size;
n/m: the number of jobs/the number of machines;

iter: the number of iterations performed by the algorithm (zero means that only INSA has been run).
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Table 6 Best Makespans Found by TSAB for Prablem Instances of Taillard (1993)

n/mik A TSAB® nmik TSAB® nmik A TSAB®
15/15/2 1,252 1,244 20/20/6 1,679 1,857 50/2011 2,921 2,868°
15/15/3 1,223 1,222 20/20/9 1,635 1,629 50/20/2 3,002 2,902
15/15/5 1,234 1,233 307151 1,770 1,766 50/20/3 2,835 2,755°
15/15/8 1,221 1,220 30/15/2 1,853 1,841 50/20/4 2,775 2,702*
15/15/9 1,289 1,282 30/15/3 1,855 1,832 50/20/5 2,800 2,725°
15/15/10 1,261 1,259 30/15/7 1,822 1,815 50/20/6 2,914 2,845°
20/15/2 1,381 1,377 30/15/8 1,714 1,700 50/20/7 2,895 2,841
20/15/4 1,355 1,345 30/15/9 1,824 1,811 50/20/8 2,835 2,784
20/15/8 1,432 1,413 30/15/10 1,723 1,720 50/20/9 3,097 3,071°
20/15/9 1,361 1,352 30/20/8 2,005 2,001 50/20/10 3,075 2,995°
20/15/10 1,373 1,362 50/15/5 2,689 2,679° 100/20/10 5,213 5,183°

n/m/k: the number of jobs/the number of machines/the index of instance;

* the best makespan found over 3—4 runs for various initial solutions;

® the best makespan found over 2 runs with maxt = 8, 10 (the same initial solution);

* the algorithm found optimal solution without proving optimality;
° the algorithm found optimal solution and proves its optimality.

Another set of large-size instances (d) were generated
similarly as in Taillard (1993). TSAB were tuned in the
same way as in §4.1 (with S5PT instead of INSA), and
required approximately 9-107° -0 sec per single iteration
on a PC (due to large-memory implementation). All
tested instances were solved optimally. The mean num-
ber of iteration necessary to find the optimal makespan
is 30 for the instances 5 X 500, 50 for 5 X 1,000, about
2-10° for instances 10 X 500, and about 7.5-10° for those
10 % 1,000.

5. Conclusions

We have presented a method based on a taboo search
technique for minimizing the maximum makespan in
the job shop scheduling problem. Due to the special
structure of the neighborhood, the method works faster
and more efficiently than other known algorithms, even
though the connectivity property does not hold for the
applied neighborhood. This makes it possible to solve
optimally, or almost optimally, medium and large-size
job shop problems on a Personal Computer in seconds
or at most a few minutes. The proposed method is easily
implementable and has several parameters which can
“tune” the method to the type of problem instances
(primal values of tuning parameters are recom-

MANAGEMENT SCIENCE/Vol. 42, No. 6, June 1996

mended). The approach can be easily extended to other
scheduling problems (such as flow shop and open
shop) with the minimum value of the maximum penalty
criterion.

Seen in the broader context, the proposed method dif-
fers in some elements from the original TS proposals.
First, the method does not keep track of the quality of
all unselected neighbors, but employs only a subset of
such neighbors. Second, solutions recorded in the list L
(elite solutions) are selected in a specific way, which the-
oretically allows us to collect solutions relatively close
to each other, and located near a single local optimum;
this suggest that some region(s) of the solution space
could be searched very intensively whereas other, prob-
ably more worthwhile, could be disregarded. Indeed, in
the experiments we observed in L some sequences of
succesive solutions, Figure 4, however, in the stable
phase of the search they had at most three elements
(hence maxl we set to 5). Moreover, our method re-
started from a close solution usually performed quite
different path search and tended to a “good” distant
region. A version of TSAB such that only distant best
solutions were taken to the list L (the distance were
measured by the number of iterations) provided gen-
erally worse results, although an improvement was
observed for some instances. On the other hand, the
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TSAB, first 600 iterations on instance A5. At iteration 600 the
list L contains solutions found at iterations 263, 294, 465, 477,
479 (see markers on the horizontal axis).

Figure 4

makespan

11504

T
iterations

problem of selection of elite solutions to L should be
considered in the context of our method behavior in a
single path search. In all tested instances, the makespan
for successive solutions is similar, and this is rather un-
usual for TS; see Figure 4. Changes are sharp, with high
amplitude, and quite often the makespan exceeds the
initial value (1003 in this figure). There are no clear dif-
ferences between the phase of best makespan decreas-
ing exponentially and the stable phase. Taking all ar-
guments into account, it seems that there are no reason-
able criteria for creating a selection which would be
good enough for all instances. It means that any pro-
posed criterion should be verified experimentally.
Based on our experience, we proposed such criteria,
tested them, and obtained quite promising results. Nev-
ertheless, it remains an open space for further research.?

2 The authors wish to thank the anonymous referees for their com-
ments. Special thanks are addressed to Fred Glover for his valuable
suggestions referring to TS technique. This research was partially sup-
ported by the International Institute of Applied System Analysis, Lax-
enburg, Austria.

Appendix A

Proof of Theorem

Let = € I be a feasible processing order and u = (uy, .. ., 4,) be the
selected critical path in G(x), which generates blocks By, ..., B, and

the neighborhood H(m). Set U = {u;, ..., u,}. Consider «

812

€ H'(m)\H(r). Denote by (x, y) the pair of operations in 7, which have
been interchanged in order to obtain a, i.e, @ = Q(x, (x, ¥)}. Then we
have

(A1) x and y are successive operations on some machine g in =, (q = p,
= w,), which means that (x, y) € E(n), and

(A2) x and y are successive operations on critical path u’ = {uf, ...,
g} in G(r).

Generally ' can be different from u. It will be shown that in G{a)

there exists a path z not shorter than 2%, 7,, = 2%, Tjef = 7 which
means that Cn(@) = 7 = Cpelnr). In order to prove 'this consider

separately four cases: “x & U,y ¢ U " “xe L, y¢ U “x& Uy
el andx€ U,y U

Case “x & U, y & U.” The interchange of operations x, y preserves
arcs (uy, uz), (o, tiz), . . ., (g1, Uy) in G(a). Hence graph G(a) contains
path z = u with the length 7. (The path z need not be the critical path
of this graph.)

Cose “x € U,y & U Letx =y forcertaink, 1l =k =w. Ilfk=w
then by (A1) the graph G(=) contains a path (1, y) longer than 7, which
means that u is not the critical path (contradiction}. Therefore it must
be that k < w. Next, observe that y # u,; (sincey & U, (u, y) € E(x)
(by A1), and (u, 1) € E(n) U R. Then we have (i, 4.} € R. Now,
assume that k > 1 and consider the following two subcases: “u,,
* /‘Lllxu and “/“Lllkq = !J‘“k'”

(i) “fh,., * u,.”~ By the definition of G(w) it follows that
(-, ) € R. Hence, graph G(a) contains path z = u with the
length 7.

(i) “i,_, = th.” Since (U1, y) € E{ar) and (y, i) € E{a) then graph
Glo) contains pathz = (uy, ..., U1, Y, W - - -, Uy) With the length 7
+ Ty

If k = 1 then (y, 1) € E{a) and graph G(a) contains path z = (y, u)
with the length 7 + 7.

Case “x & U, y € U.” The proof can be done by symmetry to the
previous case.

Case “x € U,y € U.” Letx = ugforcertaink, Il sk =wandy =y
for certain | + k, 1 = !/ = w. Note that ! = k + 1. Consider block B,, 1
= ¢ = r, such that x € B, and y € B, (by the definition of blocks, ¢
exists). If we have only one block (ie, e =r =1 and u = By) then
graph Ga) contains pathz = (uy, ..., U1, Y = Y1, X = Wy Ypwzs - - -
1) of length 7. Otherwise, consider the following three subcases: “1
<e<r/“e=1"and “e=1r"

(i) “1 < e <r” Since a ¢ H(x) then (x, y) € V.(x). Hencea, <k
and k + 1 < b,. Therefore graph G(a) contains path

z = (By, By ..oy Bocq, Yoy Uans - ooy Yo, Y = Upan, X = Hg,

Meszs ooy Uy Bevrs -, B)

of length 7.
(ii) “e = 1. Since o & H(m) then (x, y} & V(7). Hence k + 1 < b
Therefore graph G(a) contains path

Z = (U, Unys1s - -5 U1, Y = B, X = U, Ukio, o -5 Uiy, By, ....B)

of length 7.
(iii) “e = r.” The proof can be done by symmetry to (ii). Ll
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Appendix B

Proof of Property
By definition V(i) can be empty in one of two following cases: “s;
=b,j=1,...,rorr=1"

Case “a; = b, j=1,...,r” It means that (u, u,.) €ER, j=1,...,
w — 1, and therefore all operations from u are operations of the same
jobk (e, w=oand u = (uy, ..., ) =Gy + L., Ly + 00).
Hence, we obtain that Cp.(7) is equal to the job-based bound
Et/l.f:lil Ti.

Case “'r = 1.” It means that all operations from u = B, are processed
on the same machine g = u(B)) (e, {uy, ..., u,} = M,). Therefore
Conax () is equal to the machine-based bound E,EM .o O
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